(→a×→b)⋅(→c×→d)=(→a⋅→c)(→b×→d)−(→b⋅→c)(→a⋅→d)
证明:令
→a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3),d=(d1,d2,d3).则
(→a⋅→c)(→b×→d)−(→b⋅→c)(→a⋅→d=|→a⋅→c→a⋅→d→b⋅→c→b⋅→d|=|a1c1+a2c2+a3c3a1d1+a2d2+a3d3b1c1+b2c2+b3c3b1d1+b2d2+b3d3|
而
(→a×→b)⋅(→c×→d)=|→i→j→ka1a2a3b1b2b3||→i→j→kc1c2c3d1d2d3|
一个个元素分析过来,显然,两者是相等的.拉格朗日恒等式得证.◻
No comments:
Post a Comment