Processing math: 100%

Tuesday, August 7, 2012

《几何与代数导引》习题1.25.5——Lagrange恒等式

Lagrange恒等式:
(a×b)(c×d)=(ac)(b×d)(bc)(ad)



证明:令
  a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3),d=(d1,d2,d3).则
(ac)(b×d)(bc)(ad=|acadbcbd|=|a1c1+a2c2+a3c3a1d1+a2d2+a3d3b1c1+b2c2+b3c3b1d1+b2d2+b3d3|



(a×b)(c×d)=|ijka1a2a3b1b2b3||ijkc1c2c3d1d2d3|


一个个元素分析过来,显然,两者是相等的.拉格朗日恒等式得证.

No comments:

Post a Comment