MathNotes
Saturday, August 11, 2012
两直线异面的充要条件
已知直线
l
1
:
x
−
a
1
l
1
=
y
−
b
1
n
1
=
z
−
c
1
m
1
直线
l
2
:
x
−
a
2
l
2
=
y
−
b
2
n
2
=
z
−
c
2
m
2
求两直线异面的充要条件.
解:两直线异面,
即
|
→
i
→
j
→
k
l
1
n
1
m
1
l
2
n
2
m
2
|
≠
→
0
且两条直线不相交,即不存在实数
x
0
,
y
0
,
z
0
,使得
{
x
0
−
a
1
l
1
=
y
0
−
b
1
n
1
=
z
0
−
c
1
m
1
x
0
−
a
2
l
2
=
y
0
−
b
2
n
2
=
z
0
−
c
2
m
2
No comments:
Post a Comment
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment