Processing math: 100%
MathNotes
Sunday, August 12, 2012
《几何与代数导引》例2.7.4
求
y
z
面上二次曲线
{
y
2
a
2
=
2
z
x
=
0
绕
z
轴旋转所得的二次曲面的方程.
解:对于二次曲面上的任意点
p
=
(
x
,
y
,
z
)
.都存在相应的二次曲面上的点
(
x
0
,
y
0
,
z
0
)
,使得
(
x
−
x
0
,
y
−
y
0
,
z
−
z
0
)
⋅
(
0
,
0
,
1
)
=
0
且
x
2
+
y
2
+
z
2
=
x
2
0
+
y
2
0
+
z
2
0
且
{
y
2
0
a
2
=
2
z
0
x
0
=
0
z
0
≥
0
可得
x
2
+
y
2
=
2
z
a
2
No comments:
Post a Comment
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment